

The value of lichen-based critical loads of atmospheric deposition to land managers

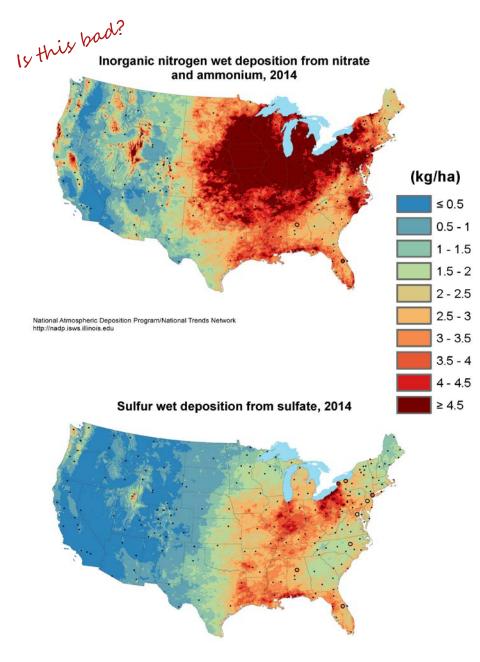
LINDA GEISER¹, PETER NELSON², MIKE BELL³, LINDA PARDO¹, CHRIS CLARK⁴, JASON LYNCH⁴ ¹ USDA-FOREST SERVICE, ² UNIVERSITY OF MAINE AT FT. KENT, ³ NATIONAL PARK SERVICE, ⁴ US EPA

Much of the US is federally managed

...So land manager decisions are important to the health and condition of natural resources

Federal Land Management Goals

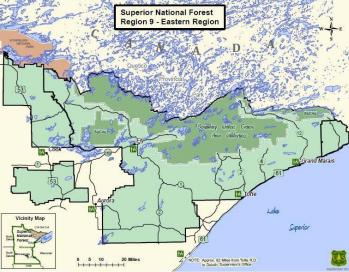
Federal laws (NFMA, NEPA, FLPMA, NPS Act, Wilderness Act) drive management objectives on federal lands.


The core requirements of these laws are reflected in the mission statements of the federal land management agencies, e.g.:

FS Mission: "To sustain the health, diversity, and productivity of the Nation's forests and grasslands to meet the needs of present and future generations."

Mission-related questions about air pollution

- Is it reducing biodiversity? By how much and where?
- Is it reducing the viability of rare species? By how much and where?
- Is it reducing productivity and services provided by forests? How and where?



National Atmospheric Deposition Program/National Trends Network http://nadp.isws.illinois.edu

Superior NF case study: Objectives

- Here, we use lichens of the Superior National Forest, MN, to show how critical loads can be used to assess risks from atmospheric deposition to:
 - biological diversity
 - rare species viability
 - ecological functions and services, specifically
 - Wildlife forage and nesting materials: Forage lichens
 - Nutrient cycling: nitrogen-fixing Cyanolichens
 - Cover and forage for invertebrates: Matrix and Cyanolichens

Introduction

 Lichens, especially epiphytic macrolichens, are well known for their sensitivity to air pollution relative to other terrestrial biota

As a corollary, lichen-based critical loads of atmospheric deposition may offer protection to the broader terrestrial flora. Cumulative adverse ecological effects

The Pacific Northwest US: A Continuum of Ecological effects from N deposition

4-10: shifts in diversity and composition of forest mycorrrhizal fungi essential to plant nutrition and wildlife.

4-8.4: fine fuel biomass of invasive grasses \rightarrow ↑ fire frequency and ↓ forage nutritive value of rangelands

<4-4: changes in foliar chemistry and rates of mineralization, nitrification & nitrate leaching in subalpine forests; episodic acidification of surface waters in subalpine lakes

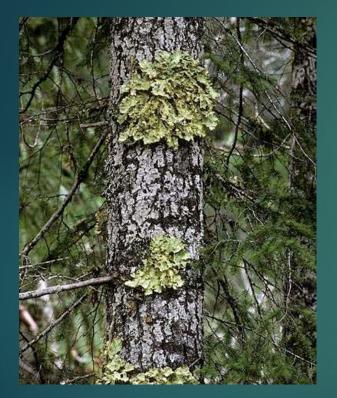
3-4. Carex rupestris declines, shifts in plant diversity, and nitrate leaching in alpine habitats

1.5-9.2 lichen community shifts in forests and deserts favoring weedy species over endemic species used as wildlife forage, nesting and insect habitat.

1.2-3: diatom community shifts in **subalpine lakes**. Diatoms form the base of the aquatic food chain.

Nitrogen loading to the environment (kg N/ha/yr)

Lichen ecosystem roles & services


- Lichens are less well known for their ecological roles. But, in fact, the roles they play are broadly exemplary of the many ecosystem functions and services provided by other forest and rangeland vegetation.
- Thus, lichen responses to air pollution can be used to illustrate the ecosystem risks, from a land manager's perspective, of exceeding terrestrial critical loads of atmospheric deposition.

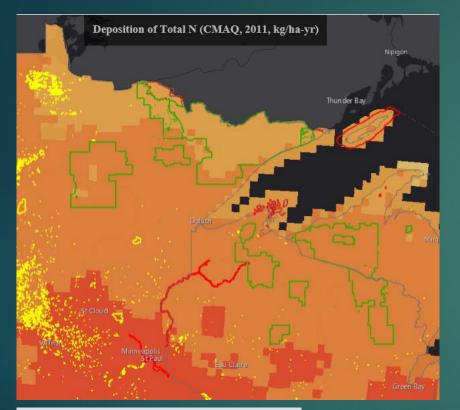
Lichens provide cover, nesting materials and forage for mammals, birds, and invertebrates

Bushtit nest, composed of spider webs and the lichen Physcia tenella

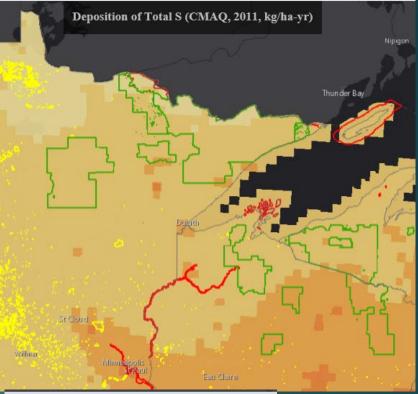
Lichen ecosystem roles & services, cont.

Nítrogen-fíxíng cyanolíchens contríbute substantíal new N to oldgrowth forests ín the PNW Soil crusts improve water holding capacity and reduce erosion

Air quality indication



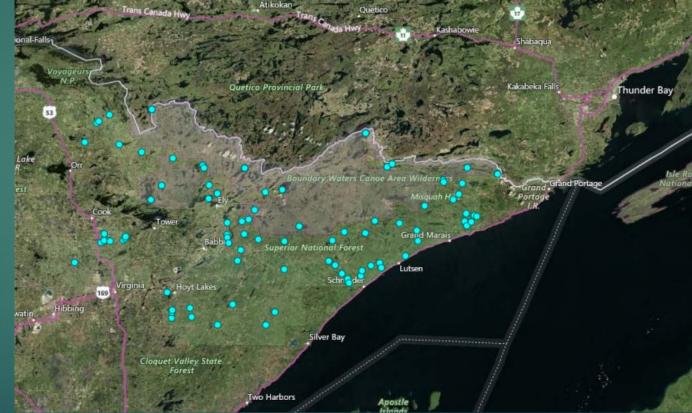
Pharmaceutícals, crafts


Traditional uses as dyes, medicines, fiber, and food

Superior National Forest: moderate N deposition, low S deposition

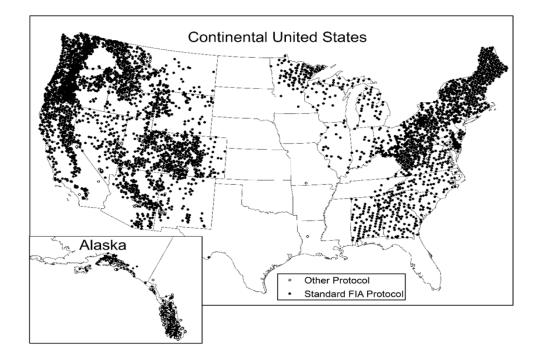
Deposition of Total N (CMAQ, 2011,	
kg/ha-yr)	CMAQ N Dep I
0.51 - 1.50	
1.51 - 3.00	75% =3.0 -5.0
3.01 - 5.00	
5.01 - 10.00	25% = 5.0-10.0
10.01 - 20.00	
20.01 - 30.00	
> 30.00	

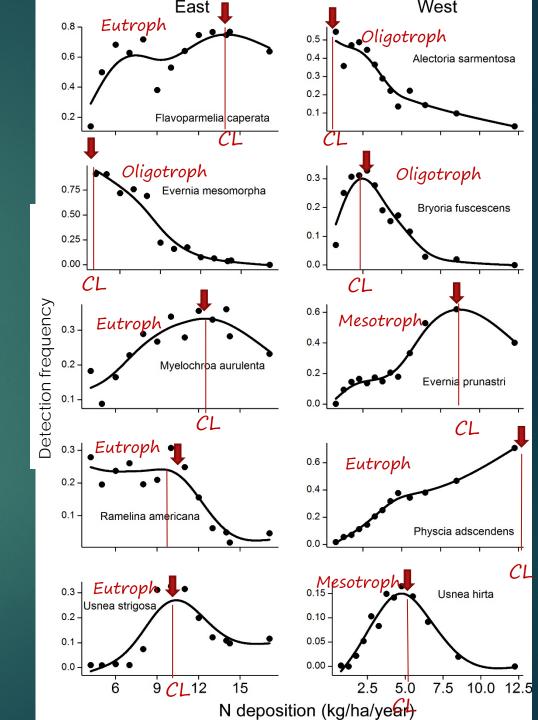
kg ha⁻¹ yr⁻¹



-	osition of Total S (CMAQ, 2011, a-yr)
	0 - 0.50
	0.51 - 1.50
	1.51 - 3.00
	3.01 - 5.00
	5.01 - 10.00
	10.01 - 20.00
	20.01 - 30.00
	> 30.00

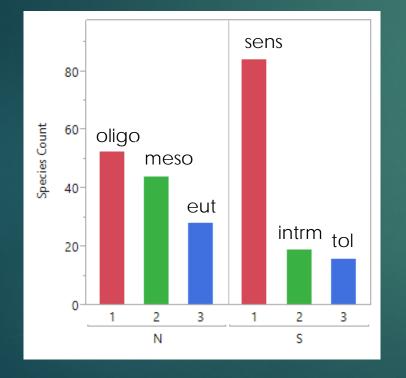
CMAQ S Dep kg ha-1 yr-1 20% = 0.5-1.5 75% = 1.5-3.0 5% = 3.0-5.0

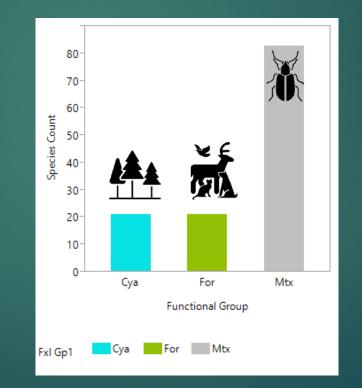

Data: Superior National Forest Lichen Survey Sites

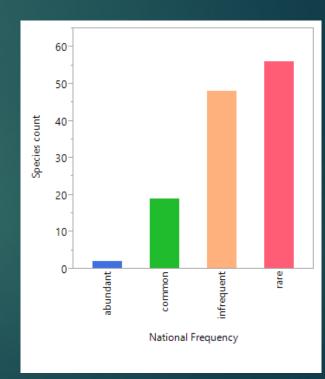

- Survey years 1994-2001
- ► 73 lichen surveys
- FIA lichen communities indicator protocol (9)I; Wetmore inventory protocol (64)
- ▶ 456 species found
- 154 Epiphytic macrolichens
- ▶ 129 Rated lichens (84%)
- Mean count of species per site 16 +/-7, min 1, max 34

Background: Lichen species critical loads

 National data set: 8,885 lichen surveys, mostly following the USFS FIA community indicator protocol.

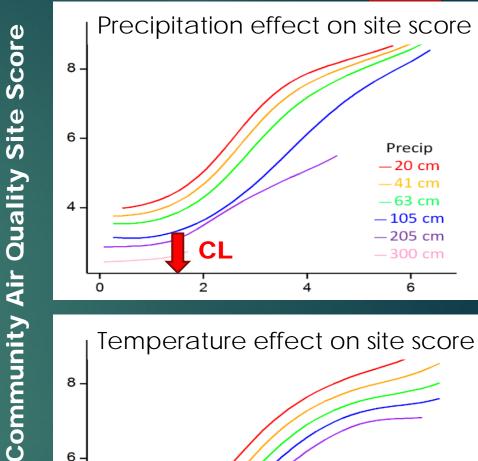


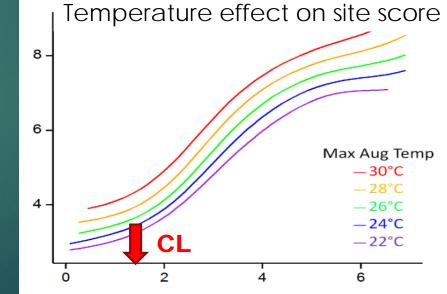



Lichens of Superior NF

Most species (71%) are Ssensitive, many are Nsensitive oligotrophs (45%; baseline not known)

About 15% of species are cyanolichens and 15% are forage lichens About 43% are rare nationally (detected on fewer than 1% of 8900 survey sites): 31% are rare on Superior NF




Background: One Critical Load

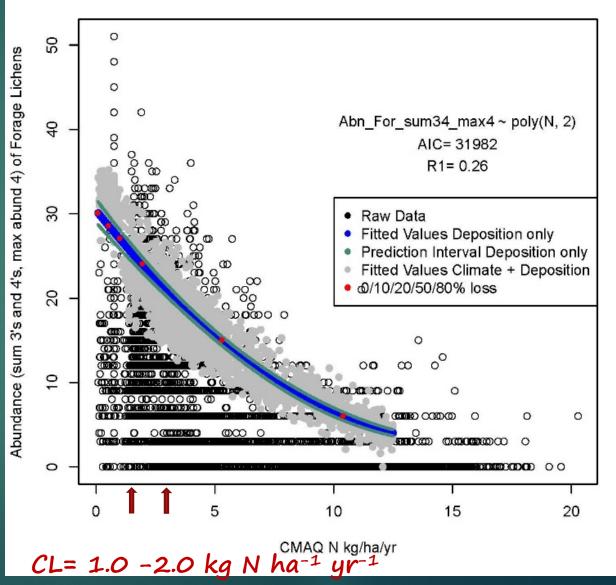
- Lichen community-based AQ site score = mean CL of the species detected at the site weighted by their abundance
- As deposition 1, the proportion of air pollution tolerant species increases at the expense of more sensitive species; mean CL of species present increases
- Community composition shifts continuously with deposition
- Warmer, hotter climates mimic air pollution, but in a predictable way.
- Because the community composition critical load (inflection point) occurs at the same deposition across all climates, there need be just one CL for the whole country (~ 1.5 kg N ha⁻¹ yr⁻¹ and ~2.5 kg S ha⁻¹ yr⁻¹)

Purpose of this CL: Simple, fast, robust:

- Protects vegetation in general
- Protects air pollution sensitive lichens

<u>-ichen</u>

CMAQ N Deposition


Background: Forage lichen diversity and abundance CLs

0%	5%	10%	LOSS 20%	50%	80%
0.1	0.5	1.0	Deposition 2.0	5.3	10.4

Purpose of this CL: Fast, simple, robust: Protects forage lichen diversity & abundance from air pollution in the US

...Conducted similar analyses for cyanolichens and total species richness for N & for S

90th Quantile Regression of Forage Lichen Abundance vs N deposition

Superior NF: Exceedance of National CLs

							Estm ave
Response				Superior NF	Area	Is this CL	decrease
Measure	Criteria	Poll	CL	deposition	affected	exceeded?	(%)
Community	no shift in	Ν	1.5	1.5-3.0	75%	Yes	10-20
Composition	proportion of			3.0-5.0	25%	Yes	20-50
	sensitive species	S	2.5	0.5-1.5	25%	No	
				1.5-3.0	75%	Maybe	
Species Richness	No more than 10-	Ν	1.7-3.5	1.5-3.0	75%	No	
	20% decrease			3.0-5.0	25%	Yes	20-50
		S	2.9-6.0	0.5-1.5	25%	No	
				1.5-3.0	75%	No	
Forage lichen	No more than 10-	Ν	1.0-2.0	1.5-3.0	75%	No	
diversity and	20% decrease			3.0-5.0	25%	Yes	20-50
abundance		S	1.4-2.6	0.5-1.5	25%	No	
				1.5-3.0	75%	No	
Cyanolichen	No more than 10-	Ν	0.7-1.3	1.5-3.0	75%	Yes	20-50
diversity and	20% decrease			3.0-5.0	25%	Yes	50-80
abundance		S	1.2-2.3	0.5-1.5	25%	М	
				1.5-3.0	75%	Y	10-20

Conclusions

1. Throughout the Forest, accounting for climate, N deposition is likely reducing the

a) frequency of N-sensitive spp by 10-50%

b) diversity and abundance of cyanolichens 20–80%

2. In ~75% of the Forest, S deposition is likely reducing the diversity and abundance of forage lichens by 10-20%

3. In ~25% of the Forest N deposition is likely reducing species richness and forage lichen diversity and abundance by 20-50%

Some iconic widespread species

Common Lichens (12 spp) detected >45% of sites	FxlGp	N CL	S CL
Flavoparmelia caperata	Matrix	14.0	32.2
Punctelia rudecta	Matrix	11.1	14.4
Physcia aipolia	Matrix	8.6	3.0
Parmelia sulcata	Matrix	8.5	8.8
Hypogymnia physodes	Matrix	8.5	4.5
Usnea subfloridana	Forage	6.0	3.4
Heterodermia speciosa	Matrix	5.5	2.7
Vulpicida pinastri	Matrix	4.6	1.4
Parmelia squarrosa	Matrix	4.2	3.8
Evernia mesomorpha	Forage	4.2	3.4
Platismatia tuckermanii	Matrix	4.2	3.7
Lobaria pulmonaria	Cyano	3.0	1.8

Superior NF Common	NF Abun							Predicted % decrease in frequency	Risk from N					Predicted % decrease in frequency	Risk from S
Lichens	Pct	USAbun	FxlGp1	CL	-20	-50	-90	at 3-5 kg N	dep	CL	-20	-50	-90	at 1.5-3 kg S	dep
Flavoparmelia caperata	75.3	Common	Matrix	14.01				0	none	32.16				0	none
Parmelia squarrosa	70.1	Infrequent	Matrix	4.2	5.3	7	15.5	0	none	3.81	5.7	7.2		0	none
Hypogymnia physodes	61.0	Abundant	Matrix	8.5	10.9			0	none	4.48	6.6	8.6		0	none
Heterodermia speciosa	54.5	Infrequent	Matrix					NA	?	2.71	3.3	4.2	8.7	<20	low
Parmelia sulcata	54.5	Abundant	Matrix					NA	?	8.75				0	none
Heterodermia speciosa	54.5	Infrequent	Matrix	5.5	7	8.5		0	none					NA	?
Parmelia sulcata	54.5	Abundant	Matrix	8.47	11.4			0	none					NA	?
Punctelia rudecta	53.2	Common	Matrix	11.09				0	none	14.42	18.9	28.3		0	none
Evernia mesomorpha	51.9	Infrequent	Forage	4.2	6.3	8.4	11.9	<20	low	3.35	6	8	12.8	0	none
Lobaria pulmonaria	48.1	Infrequent	Cyano	3	9.6	10.9		<20	low	1.84	3			<20	low
Platismatia tuckermanii	40.3	Infrequent	Matrix	4.2	4.9	6	8.4	0	none	3.73	5.3	6.5	15.9	0	none
Usnea subfloridana	39.0	Infrequent	Forage	5.9	7.7	9.7		0	none	3.36	6.6			0	none
Physcia aipolia	32.5	Infrequent	Matrix	7.8	8.7	12.7		0	none					NA	?
Vulpicida pinastri	32.5	Infrequent	Cyano	4.58	5.6	6.7	8.2	<20	low	1.39	2.3	3	4	20	low
Physcia aipolia	32.5	Infrequent	Matrix	8.55	10.8			0	none					NA	?
Cladonia chlorophaea	29.9	Infrequent	Matrix	4.2	5.7	7.8	16.5	<20	low	3.27	6.1	8.6		0	none
Cladonia squamosa	29.9	Rare	Matrix	4.2	5.9	7	15	<20	low	2.53	4	6.7		<20	low
Tuckermannopsis americana	28.6	Infrequent	Matrix	4.2	6.1	7.8	10.6	<20	low	3.38	5.6	7.2	11.8	0	none
Melanelixia subaurifera	27.3	Infrequent	Matrix	8.4	10.6	12.1		0	none	3.5	6.3			0	none
Ramalina intermedia	26.0	Rare	Forage	5.2	6.6	7.7	9.4	0	none	2.71	3.2	4.1	5.9	<20	low
Phaeophyscia rubropulchra	26.0	Common	Matrix	13.57				0	none	18.33	30.1			0	none
Lobaria quercizans	24.7	Infrequent	Cyano	4.2	4.8	5.8	7.9	20	low	3.88	5.3	6.3	8.3	0	none
Bryoria furcellata	23.4	Infrequent	Forage	4.2	5	6.2	9	<20	low	0.38	2	2.6	8.8	>50	high
Usnea cavernosa	22.1	Rare	Forage	4.7	5.7	6.4	7.7	<20	low	1.77	2.4	3	3.8	20	low
Cetrelia olivetorum	22.1	Rare	Matrix	4.2	4.9	6	12.5	20	low	2.71	3.9	5.3	29.5	<20	low
Melanohalea septentrionalis	22.1	Infrequent	Matrix	4.2	5.2	6.8	9.5	<20	low	2.71	4.8	6.3	9.1	<20	low
Leptogium cyanescens	19.5	Infrequent	Cyano	4.2	4.9	6	17.1	20	low	2.4	3.3	3.7	4.6	<20	low

Common lichens

Only 1 of the forest's 27 most common lichens may be sensitive to current levels of S deposition on most of the forest:

Forage lichen
Bryoria
furcellata

Some iconic rare species

Lichen	NF Abun	US Abun	FxlGp	N CL	S CL
Cetrelia olivetorum	Abun	Rare	Matrix	4.2	2.7
Usnea cavernosa	Abun	Rare	Forage	4.7	1.8
			Ũ		
Ramalina intermedia	Abun	Rare	Forage	5.27	2.7
Collema nigrescens	Rare	Rare	Cyano	10.0	5.5
Bryoria nadvornikiana	Rare	Rare	Forage	2.8	1.2
Fuscopannaria praetermissa	Rare	Rare	Cyano	0.8	1.6
Leptogium burnetiae	Rare	Rare	Cyano	0.8	5.3

Forest N dep: **1.5-5** kg ha⁻¹yr⁻¹ Forest S dep: **0.5-3** kg ha⁻¹yr⁻¹

			Predicted % Decrease in frequency at Risk from										Predicted % Decrease in frequency at	Risk from	
Rare Lichen of Superior NF	US Abun	FxlGp	CL	-20	-50	-90	3-5 kg N	N dep	CL	-20	-50	-90	1.5-3 kg S	S dep	
Bryoria nadvornikiana	Rare	Forage	2.82	3.9	6.5	7.9	20	low	1	2.3	2.6	3.5	50	high	
Cladonia coccifera	Rare	Matrix	0.75	1	1.3	2	90	very high	1	2.4	3.1	8.8	20	low	
Cladonia sulphurina	Infrequent	Matrix	0.75	1.1	1.7	8.3	50	high	2	3.2	3.7	4.5	<20	low	
Collema nigrescens	Rare	Cyano	9.95				0	none	5	7.3	8.6		0	none	5
Fuscopannaria praetermissa	Rare	Cyano	0.75	1.2	1.9	12.1	50	high	2	2.5	2.9	3.7	50	high	V
Heterodermia hypoleuca	Rare	Matrix	11.22	12.9	14	16.2	0	none	12	14	16	20.5	0	none	$\begin{bmatrix} t \\ t \end{bmatrix}$
Lathagrium fuscovirens	Rare	Cyano	6.3	7.4	8.2	10	0	none	1	2.3	2.6	3.6	90	very high	l V
Leptogium burnetiae	Rare	Cyano	0.75	1.1	1.6	2.4	90	very high	5	6.7	7.6	8.7	0	none	ľ
Montanelia tominii	Rare	Matrix	6.04	7.2	7.8	9	0	none	5	6.7	7.7	8.7	0	none	\
Phaeophyscia endococcina	Rare	Matrix	5.51	6.7	10.5	12.2	20	low	2	2.5	3.1	3.9	20	low	6
Phaeophyscia hirsuta	Infrequent	Matrix	4.33	5.4	6.3		0-20	low	1	2.7	6	8.3	20	low	L
Phaeophyscia sciastra	Rare	Matrix	6.25	7.3	8	8.9	0	none	1	2.1	2.5	3.4	50	high	/
Physcia americana	Infrequent	Matrix	11.8				0	none	14	17	20		0	none	1
Physcia caesia	Infrequent	Matrix	6.01	7.3	8.3	10.7	0	none	1	2.2	2.7	3.6	50	high	F
Physcia millegrana	Common	Matrix	15.63				0	none	28				0	none	F
Physconia muscigena	Rare	Matrix	4.71	5.7	6.5	12	0-20	low	1	2	2.8	3.7	50	high	ŀ
Placidium arboreum	Rare	Matrix	5.56	6.3	7	12.3	0	none	1	2.4	2.4	8.8	50	high	,
Protopannaria pezizoides	Rare	Cyano	0.75	1	1.4	6	50	high	1	2	2.6	3.5	90	very high	L
Ramalina farinacea	Common	Forage	8.36	10.9			0	none	9				0	none	1
Rusavskia sorediata	Rare	Matrix	4.98	6.2	7	8.5	0-20	low	1	2.4	2.7	3.6	50	high	
Sticta fuliginosa	Infrequent	Cyano	7.95	10	11.4		0	none	3	3.8	5.2		<20	low	
Tuckermannopsis sepincola	Rare	Matrix	0.75	1.2	1.9	6	50	high	5	6.9	11	13.7	0	none	A Providence
Usnea trichodea	Rare	Forage	4.2	4.9	5.9	7.6	20	low	4	5.6	6.5	8.1	0	none	いたとうで
Xanthomendoza fallax	Common	Matrix	12.25				0	none	3	3.3	4.2	6.4	<20	low	E.

Rare lichens

S and N air pollutants may be exacerbating the risk of extirpation for >50% of the Forest's rare spp. Very high risk (5 spp) Cladonia coccifera Lathagrium fuscovirens

Leptogium burnetiae Fuscopannaria praetermissa Protopannaria pezioides **High risk 9 spp** Low risk 6 spp Not at risk 9 spp

Conclusions

- 1. Managers are required to sustain the health, diversity and productivity of federal lands
- 2. A single robust national lichen CLs account for climate effects and provide broad protection for vegetation and sensitive lichens.
- 3. Other robust national CLs protect lichen species richness and forage and cyanolichen diversity and abundance. Risk (0,5,10,20,50 and 80% decreases) can be quickly assessed from current deposition derived from the CL Mapper.
- 4. In Superior National Forest, current N deposition levels are moderate and S deposition is low. Risk for reductions in the detection frequency (0, 20, 50, 80%) of 119 lichens can be estimated from deposition based on individual response curves.
- 5. Deposition may be exacerbating extirpation risks for >50% of the Forest's rare spp.
- 6. Lichen CLs allow rapid assessments of CL exceedances and risks-- quantifiable at community, functional group, and species levels.